Showing posts with label Repetier-Host. Show all posts
Showing posts with label Repetier-Host. Show all posts

Saturday 29 March 2014

Contact

How about this amazing pose in another photo I found on Pinterest
It appears to have come from the Raw Moves collection by photographer, James Houston.

I love the point of contact of the feet, which reminds me of some of the abstract works of Henry Moore or Jean Arp.




I think it will print OK. I'm just not sure how well it would translate into a female pose. 


What do you think?


Well, I had to give it a go, didn't I! As it turned out, getting the pose right was the easy part. I increased the muscle tone a bit and shaped the breasts into a position that suggest they are hanging in the correct direction.
Finding a way to actually print the model proved much more challenging.

Here is a view of the model in MeshLab.





The biggest problem was the contact point of the two big toes - I just knew that the tiny point of contact would be incapable of supporting the weight of the top leg growing upwards above it without breaking. After experimenting with several different ideas and some abortive prints, I decided to cut the model across the middle and print it in two halves. Finding the best place to make the cut took several attempts but the final solution turned out to be the obvious one - cut exactly between the two big toes at the contact point.

Here is the model in Cura, ready for slicing. I used MeshMixer to generate the support structures because it allowed me to place them exactly where I needed them.




And here is the same view in Repetier Host, showing the Gcode file ready for printing.




OK, it's finished! I had to reprint the leg because the toes broke on the first try due to poorly positioned supports. After cleaning them up in Blender I had another go and it came out much better.
I printed in PLA and after cleaning up the support material I used superglue to join the two halves together.

Straight from the printer, supports still attached.



Front view, reproducing the original pose.

Viewed from the back.


 
There are some nasty blemishes left behind where the supports were removed and I've also noticed that I'm getting more Z-banding on the models than I used to see. Maybe time to think about tuning up the printer again.

Monday 13 January 2014

Cicero D'Avila

I have continued in my efforts to make a good print of the sculpture inspired by the Cicero D'Avila pose in my previous post.


Firstly, I remade the arm pose, tipping the woman's head back to improve the angle of the face and prevent the arm support material from falling across it.

 

This smaller version was printed on a delta printer in red PLA and showed that the model was printable although the underside of the arms is still very ragged following removal of the support material.

At this point I decided to change the arm position again, opting for a more vertical configuration that would hopefully avoid the need for any support material. 


Once again I decided to shortcut the process of making the model printable by using Project Miller to re-skin the mesh. Unfortunately, the model still had some errors which resulted in malformed Gcode when I tried to slice it with Slic3r and Kisslicer. This time I found that the new version of Cura (I'm using 13.12) offered some very useful advanced options including Combine Everything (Type B) under the Expert settings. The Gcode looked very good in Repetier Host so I set off the 12 hour print and this time I finally managed to produce a model that does justice to the sculpture I had planned.

Here's a timelapse video made inside the printer using Octoprint.


Some detail shots taken before the smoothing process.







And after smoothing in acetone vapour to remove the print lines and support blemishes.


One more video of the finished product.




Friday 15 February 2013

Sascha

I love this striking photo by Sascha Hüttenhain and I wanted to use this as the inspiration for a new sculpture.

I had to use a bit of artistic licence to create a pose that would capture elements of the photo but remain printable on my 3D printer.

Here is the digital version of the pose that I wanted to try and print.


Capturing the Sascha Hüttenhain pose

Viewed from the other side

For the 'Pensive' sculpture, I had created a long hair style that would sit comfortably on the woman's collar bones, avoiding another potential printability issue. However, this model is holding her head sideways, so I knew that a long hair style wouldn't work.

Hair is a real problem when using the models in 3D posing software. It usually consists of multiple flat layers combined to give the illusion of depth. This may work for 2D images, but 3D printing demands real depth with solid models and the standard hair add-ons don't work.

One of the most useful techniques I have tried, is to export a hair style as an .OBJ file, import it into Blender and then use the Shrinkwrap modifier on it. It isn't a completely automatic process yet, because it still needs a fair degree of tweaking, but it is much better than attempting to print the original hair model. The finished hair object can be combined with the rest of the body with a Boolean Union join to create a single watertight mesh which the slicing software can cope with.

This model presents several new challenges. The head is tilted sideways; the legs are at a shallower angle; the left elbow is beside the knee, not resting on it; the hands are being held horizontally, one above the other.

All of these factors led me to the conclusion that I would have to turn on automatic support in my slicing software. I would also have to print with ABS plastic because of the way that the support elements will have to break away from the model, leaving the minimum of scarring. I fully expect to have to do some post-processing work after printing this model.

I generally use Slic3r for turning my 3D models into printer instructions, but I don't find it that good at generating support material. Recently, I have had more success with using Kisslicer when I need good support material. Printing models with a small footprint, and this includes support material, is sometimes more reliable if it is laid down on a printed raft, rather than directly onto the printer bed. 

In Kisslicer, I turned on the Raft option and set the Support material density to medium.
I set the model height to 8 cm and the layer height to 0.2 mm, giving a total of 400 discrete layers.

Here is a close-up preview of the printer file rendered by the excellent printer controller software, Repetier-Host, showing the raft (under the feet), the support structures (under the legs) and the individual layers of the model.


Repetier-Host preview render

And here is the 3D printed version.



Printed in grey ABS at 240°C, 0.2 mm layer height, waiting for support material to be removed.



And now, following removal of the support material and surface blemishes.




Removing the support material

Video

Pensive

The 'Sun worship' model took me at least five attempts to get a decent print from, but having finally got it to the point where I was happy with the output quality I decided it was time to move on and try a different design.

There are many factors to consider when designing a model for printing on a 'fused filament' type of 3D printer, like a RepRap or Makerbot. One of the most important ones is the the need for 'support material'.

The printer starts printing the bottom layer onto a flat bed (usually heated to 100°C to make the plastic stick to it) and then proceeds to print each successive layer on top of the one underneath. This works fine for blocks with straight sides and can even cope with sloping sides of up to 45 degrees where each layer projects out a bit further than the one below.

But in real life, things stick out at all sorts of angles and this presents a problem. Just take a look at the middle of your face and imagine how difficult it is to print chins and noses. The printer is squirting hot, runny plastic filament downwards from the nozzle and needs something to extrude the plastic onto. If there is nothing there, the string of plastic will just hang down in mid air instead of following the path that the nozzle is tracing as it draws.


Sun Worship

One way to address this problem is to create support structures which are not part of the sculpture, but are solely intended to provided a surface for the upper layers to land on. 
Another way is ensure that the model has no projecting angles shallower than about 45 degrees.
Look again at the Sun worship model and you will see that all of the limbs, the torso and the head have been carefully posed to ensure that there are no unsupported regions.



I decided that my next project would be a nude sculpture of a woman standing in a pensive pose, one knee slightly bent and arms held close to the chest. 


After working through a number of iterations I arrived at this pose.


Again I spent a considerable amount of time fixing the mouth and eyes and creating a customised hair object.





It turned out that there were several problems with this model. Firstly, the points of the elbows and the chin had nothing beneath them so I decided to add some small support blocks for removal after printing.


In this picture, you can just make out the small disc between the thumbs, as well as the triangular elbow supports.


This should have worked in theory, but in practice the chin support was too thin and failed to print correctly, while the elbow supports ended up too close to the model and caused an unsightly mess.






The other big problem was that my printer can only go up to a height of 13 cm and even using the full print height the model still ended up quite small.
This would have been OK had it not resulted in the fingers becoming too thin to print correctly.
Here is one of the early attempts demonstrating some of these problems.


I made a number of significant changes to try and improve the quality of the print.

  • Moved the elbows closer to the abdomen and removed the support blocks
  • Repositioned the thumbs under the chin
  • Slightly fattened the fingers and thumbs
  • Increased the height of the model to 20 cm
  • Printed in two halves, with a connecting pin to join them back together
The fingers are little bulky and the seam is still visible but this is straight off the printer, with no post-processing work.


Pensive


Incidentally, you can see the legs of this model being printed in the very first picture of this blog.